Skip to content

JAX-Triton documentation

JAX-Triton is a repository containing containing integrations between JAX and Triton.

JAX is a Python library for accelerated numerical computing and Triton is a Python library and compiler for writing custom GPU kernels. When we put the two together, we get JAX-Triton, which enables writing custom GPU kernels using Triton that can be embedded inside of JAX programs.

Getting started

Installing JAX-Triton

You can install JAX-Triton with pip. This will also install a compatible JAX and Triton.

$ pip install jax-triton

JAX-Triton only works with JAX on GPU, so you'll need to make sure you have a CUDA-compatible jaxlib installed. For example you could run:

$ pip install "jax[cuda11_cudnn82]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
Check out the JAX installation guide for details.

Installation at HEAD

JAX-Triton and Pallas are developed at JAX and Jaxlib HEAD and close to Triton HEAD. To get a bleeding edge installation of JAX-Triton, run:

$ pip install 'jax-triton @ git+https://github.com/jax-ml/jax-triton.git'
This should install compatible versions of JAX and Triton.

JAX-Triton does depend on Jaxlib but it's usually a more stable dependency. You might be able to get away with using a recent jaxlib release:

$ pip install jaxlib[cuda]
$ # or
$ pip install jaxlib[cuda11_pip]
$ # or
$ pip install jaxlib[cuda12_pip]

If you find there are issues with the latest Jaxlib release, you can try using a Jaxlib nightly. To install a new jaxlib, you can find a link to a CUDA 11 nightly or CUDA 12 nightly. Then install it via:

$ pip install 'jaxlib @ <link to nightly>'
or to install CUDA via pip automatically, you can do:
$ pip install 'jaxlib[cuda11_pip] @ <link to nightly>'
$ # or
$ pip install 'jaxlib[cuda12_pip] @ <link to nightly>'

Quickstart

The main function of interest is jax_triton.triton_call for applying Triton functions to JAX arrays, including inside jax.jit-compiled functions. For example, we can define a kernel from the Triton tutorial:

import triton
import triton.language as tl


@triton.jit
def add_kernel(
    x_ptr,
    y_ptr,
    output_ptr,
    block_size: tl.constexpr,
):
  """Adds two vectors."""
  pid = tl.program_id(axis=0)
  block_start = pid * block_size
  offsets = block_start + tl.arange(0, block_size)
  mask = offsets < 8
  x = tl.load(x_ptr + offsets, mask=mask)
  y = tl.load(y_ptr + offsets, mask=mask)
  output = x + y
  tl.store(output_ptr + offsets, output, mask=mask)

Then we can apply it to JAX arrays using jax_triton.triton_call:

import jax
import jax.numpy as jnp
import jax_triton as jt

def add(x: jnp.ndarray, y: jnp.ndarray) -> jnp.ndarray:
  out_shape = jax.ShapeDtypeStruct(shape=x.shape, dtype=x.dtype)
  block_size = 8
  return jt.triton_call(
      x,
      y,
      kernel=add_kernel,
      out_shape=out_shape,
      grid=(x.size // block_size,),
      block_size=block_size)

x_val = jnp.arange(8)
y_val = jnp.arange(8, 16)
print(add(x_val, y_val))
print(jax.jit(add)(x_val, y_val))

See the examples directory, especially fused_attention.py and the fused attention ipynb.