Skip to content
import arviz as az
import bayeux as bx
import jax
import matplotlib.pyplot as plt
import numpy as np
import tensorflow_probability.substrates.jax as tfp

tfd = tfp.distributions

Using bayeux with TFP-on-JAX¤

bayeux has a built-in function for working with TFP models, bx.Model.from_tfp. More on TensorFlow Probability here.

We implement a common hierarchical model of the eight schools dataset (Rubin 1981¹), whose details can be seen on the Stan documentation, PyMC documentation, TFP documentation, numpyro documentation, among others.

¹ Rubin, Donald B. 1981. “Estimation in Parallel Randomized Experiments.” Journal of Educational and Behavioral Statistics 6 (4): 377–401.

num_schools = 8
treatment_effects = np.array([28, 8, -3, 7, -1, 1, 18, 12], dtype=np.float32)
treatment_stddevs = np.array([15, 10, 16, 11, 9, 11, 10, 18], dtype=np.float32)

@tfd.JointDistributionCoroutineAutoBatched
def tfp_model():
  avg_effect = yield tfd.Normal(0., 10., name='avg_effect')
  avg_stddev = yield tfd.HalfNormal(10., name='avg_stddev')
  school_effects = yield tfd.Sample(
      tfd.Normal(0., 1.), sample_shape=8, name='school_effects')

  yield tfd.Normal(loc=avg_effect + avg_stddev * school_effects,
                   scale=treatment_stddevs, name='observed')

bx_model = bx.Model.from_tfp(
    tfp_model.experimental_pin(observed=treatment_effects))
idata = bx_model.mcmc.blackjax_nuts(seed=jax.random.key(0))

az.summary(idata)
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
avg_effect 6.593 4.070 -1.180 14.317 0.054 0.043 5630.0 3278.0 1.0
avg_stddev 4.617 3.548 0.003 10.873 0.069 0.054 3387.0 2334.0 1.0
school_effects[0] 0.341 0.973 -1.408 2.201 0.012 0.017 6129.0 2774.0 1.0
school_effects[1] 0.055 0.912 -1.654 1.741 0.011 0.016 7001.0 2885.0 1.0
school_effects[2] -0.140 0.952 -1.973 1.590 0.012 0.015 6433.0 3189.0 1.0
school_effects[3] -0.000 0.933 -1.766 1.723 0.011 0.016 6824.0 3069.0 1.0
school_effects[4] -0.256 0.917 -1.879 1.543 0.013 0.014 4907.0 3054.0 1.0
school_effects[5] -0.139 0.942 -1.935 1.646 0.012 0.016 6657.0 3072.0 1.0
school_effects[6] 0.338 0.944 -1.617 1.973 0.013 0.015 5215.0 2890.0 1.0
school_effects[7] 0.056 0.954 -1.692 1.870 0.011 0.016 7033.0 3048.0 1.0
opt_results = bx_model.optimize.optax_adam(seed=jax.random.key(0))

fig, ax = plt.subplots(figsize=(12, 2))
ax.plot(opt_results.loss.T)
opt_results.params
StructTuple(
  avg_effect=Array([6.170572 , 6.170516 , 6.1705165, 6.1705136, 6.170514 , 6.170519 ,
           6.1705165, 6.170516 ], dtype=float32),
  avg_stddev=Array([10.624942, 10.625168, 10.625167, 10.625159, 10.625164, 10.625158,
           10.625162, 10.625166], dtype=float32),
  school_effects=Array([[ 0.6820582 ,  0.09130666, -0.2641336 ,  0.03768046, -0.3825404 ,
            -0.2348828 ,  0.5903886 ,  0.14177026],
           [ 0.68643355,  0.09130628, -0.2641361 ,  0.03768098, -0.39293563,
            -0.23488228,  0.59038836,  0.14177173],
           [ 0.68643355,  0.09130625, -0.2641361 ,  0.0376812 , -0.39293563,
            -0.23488231,  0.5903883 ,  0.1417717 ],
           [ 0.6864335 ,  0.09130641, -0.26382452,  0.03768129, -0.39293548,
            -0.23488213,  0.59038854,  0.14177175],
           [ 0.68643355,  0.0913064 , -0.26413602,  0.03768126, -0.39293554,
            -0.23488219,  0.59038854,  0.14177175],
           [ 0.6864333 ,  0.09130613, -0.26413608,  0.03768104, -0.39293587,
            -0.2348824 ,  0.5903882 ,  0.1417716 ],
           [ 0.6864335 ,  0.09130625, -0.26413605,  0.03768114, -0.3929357 ,
            -0.23488227,  0.59038836,  0.14177169],
           [ 0.68643355,  0.09130628, -0.26413608,  0.03768117, -0.39293563,
            -0.23488228,  0.59038836,  0.14177173]], dtype=float32)
)
No description has been provided for this image
fit_key, draw_key = jax.random.split(jax.random.key(0))
surrogate_posterior, losses = bx_model.vi.tfp_factored_surrogate_posterior(
    seed=fit_key)


fig, ax = plt.subplots(figsize=(12, 2))
ax.plot(losses.T)

draws = surrogate_posterior.sample(100, seed=draw_key)
jax.tree.map(lambda x: np.mean(x, axis=(0, 1)), draws)
StructTuple(
  avg_effect=Array(6.5087867, dtype=float32),
  avg_stddev=Array(3.7763548, dtype=float32),
  school_effects=Array([ 0.3577297 ,  0.06299979, -0.08964223, -0.02790713, -0.26249716,
           -0.1486009 ,  0.36491287,  0.05022464], dtype=float32)
)
No description has been provided for this image